This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conjunction form of ee30 . (Contributed by Alan Sare, 17-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ee30an.1 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) | |
| ee30an.2 | ⊢ 𝜏 | ||
| ee30an.3 | ⊢ ( ( 𝜃 ∧ 𝜏 ) → 𝜂 ) | ||
| Assertion | ee30an | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜂 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ee30an.1 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) | |
| 2 | ee30an.2 | ⊢ 𝜏 | |
| 3 | ee30an.3 | ⊢ ( ( 𝜃 ∧ 𝜏 ) → 𝜂 ) | |
| 4 | 3 | ex | ⊢ ( 𝜃 → ( 𝜏 → 𝜂 ) ) |
| 5 | 1 2 4 | ee30 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜂 ) ) ) |