This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: e223 without virtual deductions. (Contributed by Alan Sare, 12-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ee223.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| ee223.2 | ⊢ ( 𝜑 → ( 𝜓 → 𝜃 ) ) | ||
| ee223.3 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜏 → 𝜂 ) ) ) | ||
| ee223.4 | ⊢ ( 𝜒 → ( 𝜃 → ( 𝜂 → 𝜁 ) ) ) | ||
| Assertion | ee223 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜏 → 𝜁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ee223.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| 2 | ee223.2 | ⊢ ( 𝜑 → ( 𝜓 → 𝜃 ) ) | |
| 3 | ee223.3 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜏 → 𝜂 ) ) ) | |
| 4 | ee223.4 | ⊢ ( 𝜒 → ( 𝜃 → ( 𝜂 → 𝜁 ) ) ) | |
| 5 | 1 4 | syl6 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜃 → ( 𝜂 → 𝜁 ) ) ) ) |
| 6 | 5 | com34 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜂 → ( 𝜃 → 𝜁 ) ) ) ) |
| 7 | 6 | com23 | ⊢ ( 𝜑 → ( 𝜂 → ( 𝜓 → ( 𝜃 → 𝜁 ) ) ) ) |
| 8 | 7 | com12 | ⊢ ( 𝜂 → ( 𝜑 → ( 𝜓 → ( 𝜃 → 𝜁 ) ) ) ) |
| 9 | 3 8 | syl8 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜏 → ( 𝜑 → ( 𝜓 → ( 𝜃 → 𝜁 ) ) ) ) ) ) |
| 10 | 9 | com34 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜑 → ( 𝜏 → ( 𝜓 → ( 𝜃 → 𝜁 ) ) ) ) ) ) |
| 11 | 10 | pm2.43a | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜏 → ( 𝜓 → ( 𝜃 → 𝜁 ) ) ) ) ) |
| 12 | 11 | com34 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜓 → ( 𝜏 → ( 𝜃 → 𝜁 ) ) ) ) ) |
| 13 | 12 | pm2.43d | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜏 → ( 𝜃 → 𝜁 ) ) ) ) |
| 14 | 13 | com34 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜃 → ( 𝜏 → 𝜁 ) ) ) ) |
| 15 | 2 14 | mpdd | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜏 → 𝜁 ) ) ) |