This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Meta-connective form of syl8 . (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | e3.1 | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) | |
| e3.2 | ⊢ ( 𝜃 → 𝜏 ) | ||
| Assertion | e3 | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e3.1 | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) | |
| 2 | e3.2 | ⊢ ( 𝜃 → 𝜏 ) | |
| 3 | 2 | a1i | ⊢ ( 𝜃 → ( 𝜃 → 𝜏 ) ) |
| 4 | 1 1 3 | e33 | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) |