This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conjunction form of e21 . (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | e21an.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| e21an.2 | ⊢ ( 𝜑 ▶ 𝜃 ) | ||
| e21an.3 | ⊢ ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) | ||
| Assertion | e21an | ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e21an.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| 2 | e21an.2 | ⊢ ( 𝜑 ▶ 𝜃 ) | |
| 3 | e21an.3 | ⊢ ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) | |
| 4 | 3 | ex | ⊢ ( 𝜒 → ( 𝜃 → 𝜏 ) ) |
| 5 | 1 2 4 | e21 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) |