This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conjunction form of e10 . (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | e10an.1 | ⊢ ( 𝜑 ▶ 𝜓 ) | |
| e10an.2 | ⊢ 𝜒 | ||
| e10an.3 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) | ||
| Assertion | e10an | ⊢ ( 𝜑 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e10an.1 | ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | e10an.2 | ⊢ 𝜒 | |
| 3 | e10an.3 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) | |
| 4 | 3 | ex | ⊢ ( 𝜓 → ( 𝜒 → 𝜃 ) ) |
| 5 | 1 2 4 | e10 | ⊢ ( 𝜑 ▶ 𝜃 ) |