This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conjunction form of e01 . (Contributed by Alan Sare, 11-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | e01an.1 | ⊢ 𝜑 | |
| e01an.2 | ⊢ ( 𝜓 ▶ 𝜒 ) | ||
| e01an.3 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) | ||
| Assertion | e01an | ⊢ ( 𝜓 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e01an.1 | ⊢ 𝜑 | |
| 2 | e01an.2 | ⊢ ( 𝜓 ▶ 𝜒 ) | |
| 3 | e01an.3 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) | |
| 4 | 3 | ex | ⊢ ( 𝜑 → ( 𝜒 → 𝜃 ) ) |
| 5 | 1 2 4 | e01 | ⊢ ( 𝜓 ▶ 𝜃 ) |