This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for domain quotient set, deduction version. (Contributed by Peter Mazsa, 26-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dmqseqeq1d.1 | ⊢ ( 𝜑 → 𝑅 = 𝑆 ) | |
| Assertion | dmqseqeq1d | ⊢ ( 𝜑 → ( ( dom 𝑅 / 𝑅 ) = 𝐴 ↔ ( dom 𝑆 / 𝑆 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmqseqeq1d.1 | ⊢ ( 𝜑 → 𝑅 = 𝑆 ) | |
| 2 | dmqseqeq1 | ⊢ ( 𝑅 = 𝑆 → ( ( dom 𝑅 / 𝑅 ) = 𝐴 ↔ ( dom 𝑆 / 𝑆 ) = 𝐴 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → ( ( dom 𝑅 / 𝑅 ) = 𝐴 ↔ ( dom 𝑆 / 𝑆 ) = 𝐴 ) ) |