This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two complex numbers are unequal, their quotient is not one. Contrapositive of diveq1d . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | div1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| divcld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| divcld.3 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | ||
| divne1d.4 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | ||
| Assertion | divne1d | ⊢ ( 𝜑 → ( 𝐴 / 𝐵 ) ≠ 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | divcld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | divcld.3 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | |
| 4 | divne1d.4 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
| 5 | 1 2 3 | diveq1ad | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) = 1 ↔ 𝐴 = 𝐵 ) ) |
| 6 | 5 | necon3bid | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) ≠ 1 ↔ 𝐴 ≠ 𝐵 ) ) |
| 7 | 4 6 | mpbird | ⊢ ( 𝜑 → ( 𝐴 / 𝐵 ) ≠ 1 ) |