This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of two ratios. Theorem I.13 of Apostol p. 18. (Contributed by NM, 21-Feb-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divclz.1 | ⊢ 𝐴 ∈ ℂ | |
| divclz.2 | ⊢ 𝐵 ∈ ℂ | ||
| divmulz.3 | ⊢ 𝐶 ∈ ℂ | ||
| divmuldiv.4 | ⊢ 𝐷 ∈ ℂ | ||
| divmuldiv.5 | ⊢ 𝐵 ≠ 0 | ||
| divmuldiv.6 | ⊢ 𝐷 ≠ 0 | ||
| Assertion | divadddivi | ⊢ ( ( 𝐴 / 𝐵 ) + ( 𝐶 / 𝐷 ) ) = ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) / ( 𝐵 · 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divclz.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | divclz.2 | ⊢ 𝐵 ∈ ℂ | |
| 3 | divmulz.3 | ⊢ 𝐶 ∈ ℂ | |
| 4 | divmuldiv.4 | ⊢ 𝐷 ∈ ℂ | |
| 5 | divmuldiv.5 | ⊢ 𝐵 ≠ 0 | |
| 6 | divmuldiv.6 | ⊢ 𝐷 ≠ 0 | |
| 7 | 2 5 | pm3.2i | ⊢ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) |
| 8 | 4 6 | pm3.2i | ⊢ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) |
| 9 | divadddiv | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 / 𝐵 ) + ( 𝐶 / 𝐷 ) ) = ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) / ( 𝐵 · 𝐷 ) ) ) | |
| 10 | 1 3 7 8 9 | mp4an | ⊢ ( ( 𝐴 / 𝐵 ) + ( 𝐶 / 𝐷 ) ) = ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) / ( 𝐵 · 𝐷 ) ) |