This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Disamis", one of the syllogisms of Aristotelian logic. Some ph is ps , and all ph is ch , therefore some ch is ps . In Aristotelian notation, IAI-3: MiP and MaS therefore SiP. (Contributed by David A. Wheeler, 28-Aug-2016) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | disamis.maj | ⊢ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) | |
| disamis.min | ⊢ ∀ 𝑥 ( 𝜑 → 𝜒 ) | ||
| Assertion | disamis | ⊢ ∃ 𝑥 ( 𝜒 ∧ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disamis.maj | ⊢ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) | |
| 2 | disamis.min | ⊢ ∀ 𝑥 ( 𝜑 → 𝜒 ) | |
| 3 | 2 1 | datisi | ⊢ ∃ 𝑥 ( 𝜓 ∧ 𝜒 ) |
| 4 | exancom | ⊢ ( ∃ 𝑥 ( 𝜓 ∧ 𝜒 ) ↔ ∃ 𝑥 ( 𝜒 ∧ 𝜓 ) ) | |
| 5 | 3 4 | mpbi | ⊢ ∃ 𝑥 ( 𝜒 ∧ 𝜓 ) |