This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of singleton, based on the (alternate) definition of pair. Definition 5.1 of TakeutiZaring p. 15. (Contributed by AV, 12-Jun-2022) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsn2ALT | ⊢ { 𝐴 } = { 𝐴 , 𝐴 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oridm | ⊢ ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐴 ) ↔ 𝑥 = 𝐴 ) | |
| 2 | 1 | abbii | ⊢ { 𝑥 ∣ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐴 ) } = { 𝑥 ∣ 𝑥 = 𝐴 } |
| 3 | dfpr2 | ⊢ { 𝐴 , 𝐴 } = { 𝑥 ∣ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐴 ) } | |
| 4 | df-sn | ⊢ { 𝐴 } = { 𝑥 ∣ 𝑥 = 𝐴 } | |
| 5 | 2 3 4 | 3eqtr4ri | ⊢ { 𝐴 } = { 𝐴 , 𝐴 } |