This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of integers, which are the positive and negative integers together with zero. Definition of integers in Apostol p. 22. The letter Z abbreviates the German word Zahlen meaning "numbers." (Contributed by NM, 8-Jan-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-z | ⊢ ℤ = { 𝑛 ∈ ℝ ∣ ( 𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ - 𝑛 ∈ ℕ ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cz | ⊢ ℤ | |
| 1 | vn | ⊢ 𝑛 | |
| 2 | cr | ⊢ ℝ | |
| 3 | 1 | cv | ⊢ 𝑛 |
| 4 | cc0 | ⊢ 0 | |
| 5 | 3 4 | wceq | ⊢ 𝑛 = 0 |
| 6 | cn | ⊢ ℕ | |
| 7 | 3 6 | wcel | ⊢ 𝑛 ∈ ℕ |
| 8 | 3 | cneg | ⊢ - 𝑛 |
| 9 | 8 6 | wcel | ⊢ - 𝑛 ∈ ℕ |
| 10 | 5 7 9 | w3o | ⊢ ( 𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ - 𝑛 ∈ ℕ ) |
| 11 | 10 1 2 | crab | ⊢ { 𝑛 ∈ ℝ ∣ ( 𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ - 𝑛 ∈ ℕ ) } |
| 12 | 0 11 | wceq | ⊢ ℤ = { 𝑛 ∈ ℝ ∣ ( 𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ - 𝑛 ∈ ℕ ) } |