This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any ring can be regarded as a left algebra over any of its subrings. The function subringAlg associates with any ring and any of its subrings the left algebra consisting in the ring itself regarded as a left algebra over the subring. It has an inner product which is simply the ring product. (Contributed by Mario Carneiro, 27-Nov-2014) (Revised by Thierry Arnoux, 16-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-sra | ⊢ subringAlg = ( 𝑤 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ( ( ( 𝑤 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑤 ↾s 𝑠 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑤 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑤 ) 〉 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | csra | ⊢ subringAlg | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | cvv | ⊢ V | |
| 3 | vs | ⊢ 𝑠 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑤 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑤 ) |
| 7 | 6 | cpw | ⊢ 𝒫 ( Base ‘ 𝑤 ) |
| 8 | csts | ⊢ sSet | |
| 9 | csca | ⊢ Scalar | |
| 10 | cnx | ⊢ ndx | |
| 11 | 10 9 | cfv | ⊢ ( Scalar ‘ ndx ) |
| 12 | cress | ⊢ ↾s | |
| 13 | 3 | cv | ⊢ 𝑠 |
| 14 | 5 13 12 | co | ⊢ ( 𝑤 ↾s 𝑠 ) |
| 15 | 11 14 | cop | ⊢ 〈 ( Scalar ‘ ndx ) , ( 𝑤 ↾s 𝑠 ) 〉 |
| 16 | 5 15 8 | co | ⊢ ( 𝑤 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑤 ↾s 𝑠 ) 〉 ) |
| 17 | cvsca | ⊢ ·𝑠 | |
| 18 | 10 17 | cfv | ⊢ ( ·𝑠 ‘ ndx ) |
| 19 | cmulr | ⊢ .r | |
| 20 | 5 19 | cfv | ⊢ ( .r ‘ 𝑤 ) |
| 21 | 18 20 | cop | ⊢ 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑤 ) 〉 |
| 22 | 16 21 8 | co | ⊢ ( ( 𝑤 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑤 ↾s 𝑠 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑤 ) 〉 ) |
| 23 | cip | ⊢ ·𝑖 | |
| 24 | 10 23 | cfv | ⊢ ( ·𝑖 ‘ ndx ) |
| 25 | 24 20 | cop | ⊢ 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑤 ) 〉 |
| 26 | 22 25 8 | co | ⊢ ( ( ( 𝑤 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑤 ↾s 𝑠 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑤 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑤 ) 〉 ) |
| 27 | 3 7 26 | cmpt | ⊢ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ( ( ( 𝑤 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑤 ↾s 𝑠 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑤 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑤 ) 〉 ) ) |
| 28 | 1 2 27 | cmpt | ⊢ ( 𝑤 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ( ( ( 𝑤 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑤 ↾s 𝑠 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑤 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑤 ) 〉 ) ) ) |
| 29 | 0 28 | wceq | ⊢ subringAlg = ( 𝑤 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ( ( ( 𝑤 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑤 ↾s 𝑠 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑤 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑤 ) 〉 ) ) ) |