This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the collection of simple paths with particular endpoints (in an undirected graph). (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 9-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-spthson | ⊢ SPathsOn = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝑎 ( TrailsOn ‘ 𝑔 ) 𝑏 ) 𝑝 ∧ 𝑓 ( SPaths ‘ 𝑔 ) 𝑝 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cspthson | ⊢ SPathsOn | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | cvv | ⊢ V | |
| 3 | va | ⊢ 𝑎 | |
| 4 | cvtx | ⊢ Vtx | |
| 5 | 1 | cv | ⊢ 𝑔 |
| 6 | 5 4 | cfv | ⊢ ( Vtx ‘ 𝑔 ) |
| 7 | vb | ⊢ 𝑏 | |
| 8 | vf | ⊢ 𝑓 | |
| 9 | vp | ⊢ 𝑝 | |
| 10 | 8 | cv | ⊢ 𝑓 |
| 11 | 3 | cv | ⊢ 𝑎 |
| 12 | ctrlson | ⊢ TrailsOn | |
| 13 | 5 12 | cfv | ⊢ ( TrailsOn ‘ 𝑔 ) |
| 14 | 7 | cv | ⊢ 𝑏 |
| 15 | 11 14 13 | co | ⊢ ( 𝑎 ( TrailsOn ‘ 𝑔 ) 𝑏 ) |
| 16 | 9 | cv | ⊢ 𝑝 |
| 17 | 10 16 15 | wbr | ⊢ 𝑓 ( 𝑎 ( TrailsOn ‘ 𝑔 ) 𝑏 ) 𝑝 |
| 18 | cspths | ⊢ SPaths | |
| 19 | 5 18 | cfv | ⊢ ( SPaths ‘ 𝑔 ) |
| 20 | 10 16 19 | wbr | ⊢ 𝑓 ( SPaths ‘ 𝑔 ) 𝑝 |
| 21 | 17 20 | wa | ⊢ ( 𝑓 ( 𝑎 ( TrailsOn ‘ 𝑔 ) 𝑏 ) 𝑝 ∧ 𝑓 ( SPaths ‘ 𝑔 ) 𝑝 ) |
| 22 | 21 8 9 | copab | ⊢ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝑎 ( TrailsOn ‘ 𝑔 ) 𝑏 ) 𝑝 ∧ 𝑓 ( SPaths ‘ 𝑔 ) 𝑝 ) } |
| 23 | 3 7 6 6 22 | cmpo | ⊢ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝑎 ( TrailsOn ‘ 𝑔 ) 𝑏 ) 𝑝 ∧ 𝑓 ( SPaths ‘ 𝑔 ) 𝑝 ) } ) |
| 24 | 1 2 23 | cmpt | ⊢ ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝑎 ( TrailsOn ‘ 𝑔 ) 𝑏 ) 𝑝 ∧ 𝑓 ( SPaths ‘ 𝑔 ) 𝑝 ) } ) ) |
| 25 | 0 24 | wceq | ⊢ SPathsOn = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝑎 ( TrailsOn ‘ 𝑔 ) 𝑏 ) 𝑝 ∧ 𝑓 ( SPaths ‘ 𝑔 ) 𝑝 ) } ) ) |