This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define reflexive relation; relation R is reflexive over the set A iff A. x e. A x R x . (Contributed by David A. Wheeler, 1-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-reflexive | ⊢ ( 𝑅 Reflexive 𝐴 ↔ ( 𝑅 ⊆ ( 𝐴 × 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 𝑥 𝑅 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | ⊢ 𝑅 | |
| 1 | cA | ⊢ 𝐴 | |
| 2 | 1 0 | wreflexive | ⊢ 𝑅 Reflexive 𝐴 |
| 3 | 1 1 | cxp | ⊢ ( 𝐴 × 𝐴 ) |
| 4 | 0 3 | wss | ⊢ 𝑅 ⊆ ( 𝐴 × 𝐴 ) |
| 5 | vx | ⊢ 𝑥 | |
| 6 | 5 | cv | ⊢ 𝑥 |
| 7 | 6 6 0 | wbr | ⊢ 𝑥 𝑅 𝑥 |
| 8 | 7 5 1 | wral | ⊢ ∀ 𝑥 ∈ 𝐴 𝑥 𝑅 𝑥 |
| 9 | 4 8 | wa | ⊢ ( 𝑅 ⊆ ( 𝐴 × 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 𝑥 𝑅 𝑥 ) |
| 10 | 2 9 | wb | ⊢ ( 𝑅 Reflexive 𝐴 ↔ ( 𝑅 ⊆ ( 𝐴 × 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 𝑥 𝑅 𝑥 ) ) |