This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the product topology on a collection of topologies. For convenience, it is defined on arbitrary collections of sets, expressed as a function from some index set to the subbases of each factor space. (Contributed by Mario Carneiro, 3-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-pt | ⊢ ∏t = ( 𝑓 ∈ V ↦ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cpt | ⊢ ∏t | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | cvv | ⊢ V | |
| 3 | ctg | ⊢ topGen | |
| 4 | vx | ⊢ 𝑥 | |
| 5 | vg | ⊢ 𝑔 | |
| 6 | 5 | cv | ⊢ 𝑔 |
| 7 | 1 | cv | ⊢ 𝑓 |
| 8 | 7 | cdm | ⊢ dom 𝑓 |
| 9 | 6 8 | wfn | ⊢ 𝑔 Fn dom 𝑓 |
| 10 | vy | ⊢ 𝑦 | |
| 11 | 10 | cv | ⊢ 𝑦 |
| 12 | 11 6 | cfv | ⊢ ( 𝑔 ‘ 𝑦 ) |
| 13 | 11 7 | cfv | ⊢ ( 𝑓 ‘ 𝑦 ) |
| 14 | 12 13 | wcel | ⊢ ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) |
| 15 | 14 10 8 | wral | ⊢ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) |
| 16 | vz | ⊢ 𝑧 | |
| 17 | cfn | ⊢ Fin | |
| 18 | 16 | cv | ⊢ 𝑧 |
| 19 | 8 18 | cdif | ⊢ ( dom 𝑓 ∖ 𝑧 ) |
| 20 | 13 | cuni | ⊢ ∪ ( 𝑓 ‘ 𝑦 ) |
| 21 | 12 20 | wceq | ⊢ ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) |
| 22 | 21 10 19 | wral | ⊢ ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) |
| 23 | 22 16 17 | wrex | ⊢ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) |
| 24 | 9 15 23 | w3a | ⊢ ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) ) |
| 25 | 4 | cv | ⊢ 𝑥 |
| 26 | 10 8 12 | cixp | ⊢ X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) |
| 27 | 25 26 | wceq | ⊢ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) |
| 28 | 24 27 | wa | ⊢ ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ) |
| 29 | 28 5 | wex | ⊢ ∃ 𝑔 ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ) |
| 30 | 29 4 | cab | ⊢ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ) } |
| 31 | 30 3 | cfv | ⊢ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ) } ) |
| 32 | 1 2 31 | cmpt | ⊢ ( 𝑓 ∈ V ↦ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 33 | 0 32 | wceq | ⊢ ∏t = ( 𝑓 ∈ V ↦ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ) } ) ) |