This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of all pseudometrics on a given base set. In a pseudo metric, two distinct points may have a distance zero. (Contributed by Thierry Arnoux, 7-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-psmet | ⊢ PsMet = ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( ℝ* ↑m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦 ∈ 𝑥 ( ( 𝑦 𝑑 𝑦 ) = 0 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cpsmet | ⊢ PsMet | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cvv | ⊢ V | |
| 3 | vd | ⊢ 𝑑 | |
| 4 | cxr | ⊢ ℝ* | |
| 5 | cmap | ⊢ ↑m | |
| 6 | 1 | cv | ⊢ 𝑥 |
| 7 | 6 6 | cxp | ⊢ ( 𝑥 × 𝑥 ) |
| 8 | 4 7 5 | co | ⊢ ( ℝ* ↑m ( 𝑥 × 𝑥 ) ) |
| 9 | vy | ⊢ 𝑦 | |
| 10 | 9 | cv | ⊢ 𝑦 |
| 11 | 3 | cv | ⊢ 𝑑 |
| 12 | 10 10 11 | co | ⊢ ( 𝑦 𝑑 𝑦 ) |
| 13 | cc0 | ⊢ 0 | |
| 14 | 12 13 | wceq | ⊢ ( 𝑦 𝑑 𝑦 ) = 0 |
| 15 | vz | ⊢ 𝑧 | |
| 16 | vw | ⊢ 𝑤 | |
| 17 | 15 | cv | ⊢ 𝑧 |
| 18 | 10 17 11 | co | ⊢ ( 𝑦 𝑑 𝑧 ) |
| 19 | cle | ⊢ ≤ | |
| 20 | 16 | cv | ⊢ 𝑤 |
| 21 | 20 10 11 | co | ⊢ ( 𝑤 𝑑 𝑦 ) |
| 22 | cxad | ⊢ +𝑒 | |
| 23 | 20 17 11 | co | ⊢ ( 𝑤 𝑑 𝑧 ) |
| 24 | 21 23 22 | co | ⊢ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) |
| 25 | 18 24 19 | wbr | ⊢ ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) |
| 26 | 25 16 6 | wral | ⊢ ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) |
| 27 | 26 15 6 | wral | ⊢ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) |
| 28 | 14 27 | wa | ⊢ ( ( 𝑦 𝑑 𝑦 ) = 0 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) ) |
| 29 | 28 9 6 | wral | ⊢ ∀ 𝑦 ∈ 𝑥 ( ( 𝑦 𝑑 𝑦 ) = 0 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) ) |
| 30 | 29 3 8 | crab | ⊢ { 𝑑 ∈ ( ℝ* ↑m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦 ∈ 𝑥 ( ( 𝑦 𝑑 𝑦 ) = 0 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) ) } |
| 31 | 1 2 30 | cmpt | ⊢ ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( ℝ* ↑m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦 ∈ 𝑥 ( ( 𝑦 𝑑 𝑦 ) = 0 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) ) } ) |
| 32 | 0 31 | wceq | ⊢ PsMet = ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( ℝ* ↑m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦 ∈ 𝑥 ( ( 𝑦 𝑑 𝑦 ) = 0 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) ) } ) |