This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of prime numbers. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-prm | ⊢ ℙ = { 𝑝 ∈ ℕ ∣ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝 } ≈ 2o } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cprime | ⊢ ℙ | |
| 1 | vp | ⊢ 𝑝 | |
| 2 | cn | ⊢ ℕ | |
| 3 | vn | ⊢ 𝑛 | |
| 4 | 3 | cv | ⊢ 𝑛 |
| 5 | cdvds | ⊢ ∥ | |
| 6 | 1 | cv | ⊢ 𝑝 |
| 7 | 4 6 5 | wbr | ⊢ 𝑛 ∥ 𝑝 |
| 8 | 7 3 2 | crab | ⊢ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝 } |
| 9 | cen | ⊢ ≈ | |
| 10 | c2o | ⊢ 2o | |
| 11 | 8 10 9 | wbr | ⊢ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝 } ≈ 2o |
| 12 | 11 1 2 | crab | ⊢ { 𝑝 ∈ ℕ ∣ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝 } ≈ 2o } |
| 13 | 0 12 | wceq | ⊢ ℙ = { 𝑝 ∈ ℕ ∣ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝 } ≈ 2o } |