This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of comember equivalence relations on their domain quotients. (Contributed by Peter Mazsa, 28-Nov-2022) (Revised by Peter Mazsa, 24-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-comembers | ⊢ CoMembErs = { 𝑎 ∣ ≀ ( ◡ E ↾ 𝑎 ) Ers 𝑎 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccomembers | ⊢ CoMembErs | |
| 1 | va | ⊢ 𝑎 | |
| 2 | cep | ⊢ E | |
| 3 | 2 | ccnv | ⊢ ◡ E |
| 4 | 1 | cv | ⊢ 𝑎 |
| 5 | 3 4 | cres | ⊢ ( ◡ E ↾ 𝑎 ) |
| 6 | 5 | ccoss | ⊢ ≀ ( ◡ E ↾ 𝑎 ) |
| 7 | cers | ⊢ Ers | |
| 8 | 6 4 7 | wbr | ⊢ ≀ ( ◡ E ↾ 𝑎 ) Ers 𝑎 |
| 9 | 8 1 | cab | ⊢ { 𝑎 ∣ ≀ ( ◡ E ↾ 𝑎 ) Ers 𝑎 } |
| 10 | 0 9 | wceq | ⊢ CoMembErs = { 𝑎 ∣ ≀ ( ◡ E ↾ 𝑎 ) Ers 𝑎 } |