This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function returning the set of isomorphic objects for each category c . Definition 3.15 of Adamek p. 29. Analogous to the definition of the group isomorphism relation ~=g , see df-gic . (Contributed by AV, 4-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cic | ⊢ ≃𝑐 = ( 𝑐 ∈ Cat ↦ ( ( Iso ‘ 𝑐 ) supp ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccic | ⊢ ≃𝑐 | |
| 1 | vc | ⊢ 𝑐 | |
| 2 | ccat | ⊢ Cat | |
| 3 | ciso | ⊢ Iso | |
| 4 | 1 | cv | ⊢ 𝑐 |
| 5 | 4 3 | cfv | ⊢ ( Iso ‘ 𝑐 ) |
| 6 | csupp | ⊢ supp | |
| 7 | c0 | ⊢ ∅ | |
| 8 | 5 7 6 | co | ⊢ ( ( Iso ‘ 𝑐 ) supp ∅ ) |
| 9 | 1 2 8 | cmpt | ⊢ ( 𝑐 ∈ Cat ↦ ( ( Iso ‘ 𝑐 ) supp ∅ ) ) |
| 10 | 0 9 | wceq | ⊢ ≃𝑐 = ( 𝑐 ∈ Cat ↦ ( ( Iso ‘ 𝑐 ) supp ∅ ) ) |