This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the following predicate: R is both well-founded and set-like on A . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-bnj15 | ⊢ ( 𝑅 FrSe 𝐴 ↔ ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | ⊢ 𝑅 | |
| 1 | cA | ⊢ 𝐴 | |
| 2 | 1 0 | w-bnj15 | ⊢ 𝑅 FrSe 𝐴 |
| 3 | 1 0 | wfr | ⊢ 𝑅 Fr 𝐴 |
| 4 | 1 0 | w-bnj13 | ⊢ 𝑅 Se 𝐴 |
| 5 | 3 4 | wa | ⊢ ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) |
| 6 | 2 5 | wb | ⊢ ( 𝑅 FrSe 𝐴 ↔ ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ) |