This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the second projection functor out of the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-2ndf | ⊢ 2ndF = ( 𝑟 ∈ Cat , 𝑠 ∈ Cat ↦ ⦋ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑠 ) ) / 𝑏 ⦌ 〈 ( 2nd ↾ 𝑏 ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 2nd ↾ ( 𝑥 ( Hom ‘ ( 𝑟 ×c 𝑠 ) ) 𝑦 ) ) ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | c2ndf | ⊢ 2ndF | |
| 1 | vr | ⊢ 𝑟 | |
| 2 | ccat | ⊢ Cat | |
| 3 | vs | ⊢ 𝑠 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑟 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑟 ) |
| 7 | 3 | cv | ⊢ 𝑠 |
| 8 | 7 4 | cfv | ⊢ ( Base ‘ 𝑠 ) |
| 9 | 6 8 | cxp | ⊢ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑠 ) ) |
| 10 | vb | ⊢ 𝑏 | |
| 11 | c2nd | ⊢ 2nd | |
| 12 | 10 | cv | ⊢ 𝑏 |
| 13 | 11 12 | cres | ⊢ ( 2nd ↾ 𝑏 ) |
| 14 | vx | ⊢ 𝑥 | |
| 15 | vy | ⊢ 𝑦 | |
| 16 | 14 | cv | ⊢ 𝑥 |
| 17 | chom | ⊢ Hom | |
| 18 | cxpc | ⊢ ×c | |
| 19 | 5 7 18 | co | ⊢ ( 𝑟 ×c 𝑠 ) |
| 20 | 19 17 | cfv | ⊢ ( Hom ‘ ( 𝑟 ×c 𝑠 ) ) |
| 21 | 15 | cv | ⊢ 𝑦 |
| 22 | 16 21 20 | co | ⊢ ( 𝑥 ( Hom ‘ ( 𝑟 ×c 𝑠 ) ) 𝑦 ) |
| 23 | 11 22 | cres | ⊢ ( 2nd ↾ ( 𝑥 ( Hom ‘ ( 𝑟 ×c 𝑠 ) ) 𝑦 ) ) |
| 24 | 14 15 12 12 23 | cmpo | ⊢ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 2nd ↾ ( 𝑥 ( Hom ‘ ( 𝑟 ×c 𝑠 ) ) 𝑦 ) ) ) |
| 25 | 13 24 | cop | ⊢ 〈 ( 2nd ↾ 𝑏 ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 2nd ↾ ( 𝑥 ( Hom ‘ ( 𝑟 ×c 𝑠 ) ) 𝑦 ) ) ) 〉 |
| 26 | 10 9 25 | csb | ⊢ ⦋ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑠 ) ) / 𝑏 ⦌ 〈 ( 2nd ↾ 𝑏 ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 2nd ↾ ( 𝑥 ( Hom ‘ ( 𝑟 ×c 𝑠 ) ) 𝑦 ) ) ) 〉 |
| 27 | 1 3 2 2 26 | cmpo | ⊢ ( 𝑟 ∈ Cat , 𝑠 ∈ Cat ↦ ⦋ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑠 ) ) / 𝑏 ⦌ 〈 ( 2nd ↾ 𝑏 ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 2nd ↾ ( 𝑥 ( Hom ‘ ( 𝑟 ×c 𝑠 ) ) 𝑦 ) ) ) 〉 ) |
| 28 | 0 27 | wceq | ⊢ 2ndF = ( 𝑟 ∈ Cat , 𝑠 ∈ Cat ↦ ⦋ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑠 ) ) / 𝑏 ⦌ 〈 ( 2nd ↾ 𝑏 ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 2nd ↾ ( 𝑥 ( Hom ‘ ( 𝑟 ×c 𝑠 ) ) 𝑦 ) ) ) 〉 ) |