This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all first-countable topologies. (Contributed by Jeff Hankins, 22-Aug-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-1stc | ⊢ 1stω = { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | c1stc | ⊢ 1stω | |
| 1 | vj | ⊢ 𝑗 | |
| 2 | ctop | ⊢ Top | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | 1 | cv | ⊢ 𝑗 |
| 5 | 4 | cuni | ⊢ ∪ 𝑗 |
| 6 | vy | ⊢ 𝑦 | |
| 7 | 4 | cpw | ⊢ 𝒫 𝑗 |
| 8 | 6 | cv | ⊢ 𝑦 |
| 9 | cdom | ⊢ ≼ | |
| 10 | com | ⊢ ω | |
| 11 | 8 10 9 | wbr | ⊢ 𝑦 ≼ ω |
| 12 | vz | ⊢ 𝑧 | |
| 13 | 3 | cv | ⊢ 𝑥 |
| 14 | 12 | cv | ⊢ 𝑧 |
| 15 | 13 14 | wcel | ⊢ 𝑥 ∈ 𝑧 |
| 16 | 14 | cpw | ⊢ 𝒫 𝑧 |
| 17 | 8 16 | cin | ⊢ ( 𝑦 ∩ 𝒫 𝑧 ) |
| 18 | 17 | cuni | ⊢ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) |
| 19 | 13 18 | wcel | ⊢ 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) |
| 20 | 15 19 | wi | ⊢ ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) |
| 21 | 20 12 4 | wral | ⊢ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) |
| 22 | 11 21 | wa | ⊢ ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) |
| 23 | 22 6 7 | wrex | ⊢ ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) |
| 24 | 23 3 5 | wral | ⊢ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) |
| 25 | 24 1 2 | crab | ⊢ { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) } |
| 26 | 0 25 | wceq | ⊢ 1stω = { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) } |