This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Degree of a nonzero univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | deg1z.d | ⊢ 𝐷 = ( deg1 ‘ 𝑅 ) | |
| deg1z.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| deg1z.z | ⊢ 0 = ( 0g ‘ 𝑃 ) | ||
| deg1nn0cl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| Assertion | deg1nn0cl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deg1z.d | ⊢ 𝐷 = ( deg1 ‘ 𝑅 ) | |
| 2 | deg1z.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 3 | deg1z.z | ⊢ 0 = ( 0g ‘ 𝑃 ) | |
| 4 | deg1nn0cl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 5 | 1 | deg1fval | ⊢ 𝐷 = ( 1o mDeg 𝑅 ) |
| 6 | eqid | ⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) | |
| 7 | 6 2 3 | ply1mpl0 | ⊢ 0 = ( 0g ‘ ( 1o mPoly 𝑅 ) ) |
| 8 | 2 4 | ply1bas | ⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 9 | 5 6 7 8 | mdegnn0cl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |