This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for an alternate version of weak deduction theorem. (Contributed by NM, 2-Apr-1994) (Proof shortened by Andrew Salmon, 7-May-2011) (Proof shortened by Wolf Lammen, 4-Dec-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dedlem0a | ⊢ ( 𝜑 → ( 𝜓 ↔ ( ( 𝜒 → 𝜑 ) → ( 𝜓 ∧ 𝜑 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iba | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜓 ∧ 𝜑 ) ) ) | |
| 2 | biimt | ⊢ ( ( 𝜒 → 𝜑 ) → ( ( 𝜓 ∧ 𝜑 ) ↔ ( ( 𝜒 → 𝜑 ) → ( 𝜓 ∧ 𝜑 ) ) ) ) | |
| 3 | 2 | jarri | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜑 ) ↔ ( ( 𝜒 → 𝜑 ) → ( 𝜓 ∧ 𝜑 ) ) ) ) |
| 4 | 1 3 | bitrd | ⊢ ( 𝜑 → ( 𝜓 ↔ ( ( 𝜒 → 𝜑 ) → ( 𝜓 ∧ 𝜑 ) ) ) ) |