This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparing two decimal integers (equal higher places). (Contributed by AV, 17-Aug-2021) (Revised by AV, 8-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | decle.1 | ⊢ 𝐴 ∈ ℕ0 | |
| decle.2 | ⊢ 𝐵 ∈ ℕ0 | ||
| decle.3 | ⊢ 𝐶 ∈ ℕ0 | ||
| decle.4 | ⊢ 𝐵 ≤ 𝐶 | ||
| Assertion | decle | ⊢ ; 𝐴 𝐵 ≤ ; 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decle.1 | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decle.2 | ⊢ 𝐵 ∈ ℕ0 | |
| 3 | decle.3 | ⊢ 𝐶 ∈ ℕ0 | |
| 4 | decle.4 | ⊢ 𝐵 ≤ 𝐶 | |
| 5 | 2 | nn0rei | ⊢ 𝐵 ∈ ℝ |
| 6 | 3 | nn0rei | ⊢ 𝐶 ∈ ℝ |
| 7 | 10nn0 | ⊢ ; 1 0 ∈ ℕ0 | |
| 8 | 7 1 | nn0mulcli | ⊢ ( ; 1 0 · 𝐴 ) ∈ ℕ0 |
| 9 | 8 | nn0rei | ⊢ ( ; 1 0 · 𝐴 ) ∈ ℝ |
| 10 | 5 6 9 | leadd2i | ⊢ ( 𝐵 ≤ 𝐶 ↔ ( ( ; 1 0 · 𝐴 ) + 𝐵 ) ≤ ( ( ; 1 0 · 𝐴 ) + 𝐶 ) ) |
| 11 | 4 10 | mpbi | ⊢ ( ( ; 1 0 · 𝐴 ) + 𝐵 ) ≤ ( ( ; 1 0 · 𝐴 ) + 𝐶 ) |
| 12 | dfdec10 | ⊢ ; 𝐴 𝐵 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) | |
| 13 | dfdec10 | ⊢ ; 𝐴 𝐶 = ( ( ; 1 0 · 𝐴 ) + 𝐶 ) | |
| 14 | 11 12 13 | 3brtr4i | ⊢ ; 𝐴 𝐵 ≤ ; 𝐴 𝐶 |