This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | curry2.1 | ⊢ 𝐺 = ( 𝐹 ∘ ◡ ( 1st ↾ ( V × { 𝐶 } ) ) ) | |
| Assertion | curry2f | ⊢ ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 ∧ 𝐶 ∈ 𝐵 ) → 𝐺 : 𝐴 ⟶ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curry2.1 | ⊢ 𝐺 = ( 𝐹 ∘ ◡ ( 1st ↾ ( V × { 𝐶 } ) ) ) | |
| 2 | ffn | ⊢ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 → 𝐹 Fn ( 𝐴 × 𝐵 ) ) | |
| 3 | 1 | curry2 | ⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐵 ) → 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑥 𝐹 𝐶 ) ) ) |
| 4 | 2 3 | sylan | ⊢ ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 ∧ 𝐶 ∈ 𝐵 ) → 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑥 𝐹 𝐶 ) ) ) |
| 5 | fovcdm | ⊢ ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 ∧ 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( 𝑥 𝐹 𝐶 ) ∈ 𝐷 ) | |
| 6 | 5 | 3com23 | ⊢ ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝐹 𝐶 ) ∈ 𝐷 ) |
| 7 | 6 | 3expa | ⊢ ( ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝐹 𝐶 ) ∈ 𝐷 ) |
| 8 | 4 7 | fmpt3d | ⊢ ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 ∧ 𝐶 ∈ 𝐵 ) → 𝐺 : 𝐴 ⟶ 𝐷 ) |