This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution through the range of a class. (Contributed by Alan Sare, 10-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbrn | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ran 𝐵 = ran ⦋ 𝐴 / 𝑥 ⦌ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbima12 | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 “ V ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ ⦋ 𝐴 / 𝑥 ⦌ V ) | |
| 2 | csbconstg | ⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ V = V ) | |
| 3 | 2 | imaeq2d | ⊢ ( 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ ⦋ 𝐴 / 𝑥 ⦌ V ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ V ) ) |
| 4 | 0ima | ⊢ ( ∅ “ V ) = ∅ | |
| 5 | 4 | eqcomi | ⊢ ∅ = ( ∅ “ V ) |
| 6 | csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ∅ ) | |
| 7 | 6 | imaeq1d | ⊢ ( ¬ 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ ⦋ 𝐴 / 𝑥 ⦌ V ) = ( ∅ “ ⦋ 𝐴 / 𝑥 ⦌ V ) ) |
| 8 | 0ima | ⊢ ( ∅ “ ⦋ 𝐴 / 𝑥 ⦌ V ) = ∅ | |
| 9 | 7 8 | eqtrdi | ⊢ ( ¬ 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ ⦋ 𝐴 / 𝑥 ⦌ V ) = ∅ ) |
| 10 | 6 | imaeq1d | ⊢ ( ¬ 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ V ) = ( ∅ “ V ) ) |
| 11 | 5 9 10 | 3eqtr4a | ⊢ ( ¬ 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ ⦋ 𝐴 / 𝑥 ⦌ V ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ V ) ) |
| 12 | 3 11 | pm2.61i | ⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ ⦋ 𝐴 / 𝑥 ⦌ V ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ V ) |
| 13 | 1 12 | eqtri | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 “ V ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ V ) |
| 14 | dfrn4 | ⊢ ran 𝐵 = ( 𝐵 “ V ) | |
| 15 | 14 | csbeq2i | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ran 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 “ V ) |
| 16 | dfrn4 | ⊢ ran ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ V ) | |
| 17 | 13 15 16 | 3eqtr4i | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ran 𝐵 = ran ⦋ 𝐴 / 𝑥 ⦌ 𝐵 |