This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem cosscnvelrels

Description: Cosets of converse sets are elements of the relations class. (Contributed by Peter Mazsa, 31-Aug-2021)

Ref Expression
Assertion cosscnvelrels ( 𝐴𝑉 → ≀ 𝐴 ∈ Rels )

Proof

Step Hyp Ref Expression
1 cnvelrels ( 𝐴𝑉 𝐴 ∈ Rels )
2 cosselrels ( 𝐴 ∈ Rels → ≀ 𝐴 ∈ Rels )
3 1 2 syl ( 𝐴𝑉 → ≀ 𝐴 ∈ Rels )