This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closed neighborhood of a vertex in a finite simple graph is a finite set. (Contributed by AV, 10-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clnbfiusgrfi | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ClNeighbVtx 𝑁 ) ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fusgrusgr | ⊢ ( 𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → 𝐺 ∈ USGraph ) |
| 3 | fusgrfis | ⊢ ( 𝐺 ∈ FinUSGraph → ( Edg ‘ 𝐺 ) ∈ Fin ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → ( Edg ‘ 𝐺 ) ∈ Fin ) |
| 5 | simpr | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 6 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 7 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 8 | 6 7 | clnbusgrfi | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( Edg ‘ 𝐺 ) ∈ Fin ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ClNeighbVtx 𝑁 ) ∈ Fin ) |
| 9 | 2 4 5 8 | syl3anc | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ClNeighbVtx 𝑁 ) ∈ Fin ) |