This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: De Morgan's law for join in a Hilbert lattice. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chdmj1 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chdmm4 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( 𝐴 ∨ℋ 𝐵 ) ) | |
| 2 | 1 | fveq2d | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 3 | choccl | ⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) | |
| 4 | choccl | ⊢ ( 𝐵 ∈ Cℋ → ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) | |
| 5 | chincl | ⊢ ( ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) → ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ ) | |
| 6 | 3 4 5 | syl2an | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ ) |
| 7 | ococ | ⊢ ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) |
| 9 | 2 8 | eqtr3d | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) |