This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 11-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsexg.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| ceqsexg.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | ceqsexg | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsexg.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | ceqsexg.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | nfe1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) | |
| 4 | 3 1 | nfbi | ⊢ Ⅎ 𝑥 ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜓 ) |
| 5 | ceqex | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) | |
| 6 | 5 2 | bibi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ↔ 𝜑 ) ↔ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜓 ) ) ) |
| 7 | biid | ⊢ ( 𝜑 ↔ 𝜑 ) | |
| 8 | 4 6 7 | vtoclg1f | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜓 ) ) |