This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The length of the concatenation of a word with two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018) (Revised by AV, 5-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatw2s1len | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ) = ( ( ♯ ‘ 𝑊 ) + 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatws1clv | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ Word V ) | |
| 2 | ccatws1len | ⊢ ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ Word V → ( ♯ ‘ ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ) = ( ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) + 1 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ) = ( ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) + 1 ) ) |
| 4 | ccatws1len | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) | |
| 5 | 4 | oveq1d | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) + 1 ) = ( ( ( ♯ ‘ 𝑊 ) + 1 ) + 1 ) ) |
| 6 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 7 | nn0cn | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) | |
| 8 | add1p1 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℂ → ( ( ( ♯ ‘ 𝑊 ) + 1 ) + 1 ) = ( ( ♯ ‘ 𝑊 ) + 2 ) ) | |
| 9 | 6 7 8 | 3syl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ( ♯ ‘ 𝑊 ) + 1 ) + 1 ) = ( ( ♯ ‘ 𝑊 ) + 2 ) ) |
| 10 | 3 5 9 | 3eqtrd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ) = ( ( ♯ ‘ 𝑊 ) + 2 ) ) |