This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvalw.1 | ⊢ ( ∀ 𝑥 𝜑 → ∀ 𝑦 ∀ 𝑥 𝜑 ) | |
| cbvalw.2 | ⊢ ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜓 ) | ||
| cbvalw.3 | ⊢ ( ∀ 𝑦 𝜓 → ∀ 𝑥 ∀ 𝑦 𝜓 ) | ||
| cbvalw.4 | ⊢ ( ¬ 𝜑 → ∀ 𝑦 ¬ 𝜑 ) | ||
| cbvalw.5 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | cbvalw | ⊢ ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalw.1 | ⊢ ( ∀ 𝑥 𝜑 → ∀ 𝑦 ∀ 𝑥 𝜑 ) | |
| 2 | cbvalw.2 | ⊢ ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜓 ) | |
| 3 | cbvalw.3 | ⊢ ( ∀ 𝑦 𝜓 → ∀ 𝑥 ∀ 𝑦 𝜓 ) | |
| 4 | cbvalw.4 | ⊢ ( ¬ 𝜑 → ∀ 𝑦 ¬ 𝜑 ) | |
| 5 | cbvalw.5 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 6 | 5 | biimpd | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) |
| 7 | 1 2 6 | cbvaliw | ⊢ ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) |
| 8 | 5 | biimprd | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 → 𝜑 ) ) |
| 9 | 8 | equcoms | ⊢ ( 𝑦 = 𝑥 → ( 𝜓 → 𝜑 ) ) |
| 10 | 3 4 9 | cbvaliw | ⊢ ( ∀ 𝑦 𝜓 → ∀ 𝑥 𝜑 ) |
| 11 | 7 10 | impbii | ⊢ ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 𝜓 ) |