This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The hom-sets of the category structure. (Contributed by Zhi Wang, 5-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catbas.c | ⊢ 𝐶 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } | |
| cathomfval.h | ⊢ 𝐻 ∈ V | ||
| Assertion | cathomfval | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catbas.c | ⊢ 𝐶 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } | |
| 2 | cathomfval.h | ⊢ 𝐻 ∈ V | |
| 3 | catstr | ⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } Struct 〈 1 , ; 1 5 〉 | |
| 4 | 1 3 | eqbrtri | ⊢ 𝐶 Struct 〈 1 , ; 1 5 〉 |
| 5 | homid | ⊢ Hom = Slot ( Hom ‘ ndx ) | |
| 6 | snsstp2 | ⊢ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 } ⊆ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } | |
| 7 | 6 1 | sseqtrri | ⊢ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 } ⊆ 𝐶 |
| 8 | 4 5 7 | strfv | ⊢ ( 𝐻 ∈ V → 𝐻 = ( Hom ‘ 𝐶 ) ) |
| 9 | 2 8 | ax-mp | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) |