This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of cases expressed using if- . Case disjunction according to the value of ph . One can see this as a proof that the two hypotheses characterize the conditional operator for propositions. For the converses, see ifptru and ifpfal . (Contributed by BJ, 20-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | casesifp.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| casesifp.2 | ⊢ ( ¬ 𝜑 → ( 𝜓 ↔ 𝜃 ) ) | ||
| Assertion | casesifp | ⊢ ( 𝜓 ↔ if- ( 𝜑 , 𝜒 , 𝜃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | casesifp.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | casesifp.2 | ⊢ ( ¬ 𝜑 → ( 𝜓 ↔ 𝜃 ) ) | |
| 3 | 1 2 | cases | ⊢ ( 𝜓 ↔ ( ( 𝜑 ∧ 𝜒 ) ∨ ( ¬ 𝜑 ∧ 𝜃 ) ) ) |
| 4 | df-ifp | ⊢ ( if- ( 𝜑 , 𝜒 , 𝜃 ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∨ ( ¬ 𝜑 ∧ 𝜃 ) ) ) | |
| 5 | 3 4 | bitr4i | ⊢ ( 𝜓 ↔ if- ( 𝜑 , 𝜒 , 𝜃 ) ) |