This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caov.1 | ⊢ 𝐴 ∈ V | |
| caov.2 | ⊢ 𝐵 ∈ V | ||
| caov.3 | ⊢ 𝐶 ∈ V | ||
| caov.com | ⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝑦 𝐹 𝑥 ) | ||
| caov.ass | ⊢ ( ( 𝑥 𝐹 𝑦 ) 𝐹 𝑧 ) = ( 𝑥 𝐹 ( 𝑦 𝐹 𝑧 ) ) | ||
| Assertion | caov31 | ⊢ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( ( 𝐶 𝐹 𝐵 ) 𝐹 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caov.1 | ⊢ 𝐴 ∈ V | |
| 2 | caov.2 | ⊢ 𝐵 ∈ V | |
| 3 | caov.3 | ⊢ 𝐶 ∈ V | |
| 4 | caov.com | ⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝑦 𝐹 𝑥 ) | |
| 5 | caov.ass | ⊢ ( ( 𝑥 𝐹 𝑦 ) 𝐹 𝑧 ) = ( 𝑥 𝐹 ( 𝑦 𝐹 𝑧 ) ) | |
| 6 | 1 3 2 5 | caovass | ⊢ ( ( 𝐴 𝐹 𝐶 ) 𝐹 𝐵 ) = ( 𝐴 𝐹 ( 𝐶 𝐹 𝐵 ) ) |
| 7 | 1 3 2 4 5 | caov12 | ⊢ ( 𝐴 𝐹 ( 𝐶 𝐹 𝐵 ) ) = ( 𝐶 𝐹 ( 𝐴 𝐹 𝐵 ) ) |
| 8 | 6 7 | eqtri | ⊢ ( ( 𝐴 𝐹 𝐶 ) 𝐹 𝐵 ) = ( 𝐶 𝐹 ( 𝐴 𝐹 𝐵 ) ) |
| 9 | 1 2 3 4 5 | caov32 | ⊢ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( ( 𝐴 𝐹 𝐶 ) 𝐹 𝐵 ) |
| 10 | 3 1 2 4 5 | caov32 | ⊢ ( ( 𝐶 𝐹 𝐴 ) 𝐹 𝐵 ) = ( ( 𝐶 𝐹 𝐵 ) 𝐹 𝐴 ) |
| 11 | 3 1 2 5 | caovass | ⊢ ( ( 𝐶 𝐹 𝐴 ) 𝐹 𝐵 ) = ( 𝐶 𝐹 ( 𝐴 𝐹 𝐵 ) ) |
| 12 | 10 11 | eqtr3i | ⊢ ( ( 𝐶 𝐹 𝐵 ) 𝐹 𝐴 ) = ( 𝐶 𝐹 ( 𝐴 𝐹 𝐵 ) ) |
| 13 | 8 9 12 | 3eqtr4i | ⊢ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( ( 𝐶 𝐹 𝐵 ) 𝐹 𝐴 ) |