This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation with the complement under the universal class of ordered pairs is the same as with universal complement. (Contributed by Peter Mazsa, 28-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brvbrvvdif | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ( ( V × V ) ∖ 𝑅 ) 𝐵 ↔ 𝐴 ( V ∖ 𝑅 ) 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brvvdif | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ( ( V × V ) ∖ 𝑅 ) 𝐵 ↔ ¬ 𝐴 𝑅 𝐵 ) ) | |
| 2 | brvdif | ⊢ ( 𝐴 ( V ∖ 𝑅 ) 𝐵 ↔ ¬ 𝐴 𝑅 𝐵 ) | |
| 3 | 1 2 | bitr4di | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ( ( V × V ) ∖ 𝑅 ) 𝐵 ↔ 𝐴 ( V ∖ 𝑅 ) 𝐵 ) ) |