This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of axprlem4 as of 18-Sep-2025. (Contributed by Rohan Ridenour, 10-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axprlem5OLD | ⊢ ( ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) → ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-nul | ⊢ ∃ 𝑠 ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 | |
| 2 | nfa1 | ⊢ Ⅎ 𝑠 ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) | |
| 3 | nfv | ⊢ Ⅎ 𝑠 𝑤 = 𝑦 | |
| 4 | 2 3 | nfan | ⊢ Ⅎ 𝑠 ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) |
| 5 | pm2.21 | ⊢ ( ¬ 𝑛 ∈ 𝑠 → ( 𝑛 ∈ 𝑠 → ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) ) | |
| 6 | 5 | alimi | ⊢ ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 → ∀ 𝑛 ( 𝑛 ∈ 𝑠 → ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) ) |
| 7 | 6 | adantr | ⊢ ( ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 ∧ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) ) → ∀ 𝑛 ( 𝑛 ∈ 𝑠 → ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) ) |
| 8 | df-ral | ⊢ ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ↔ ∀ 𝑛 ( 𝑛 ∈ 𝑠 → ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) ) | |
| 9 | 7 8 | sylibr | ⊢ ( ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 ∧ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) ) → ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) |
| 10 | sp | ⊢ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) → ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ) | |
| 11 | 10 | ad2antrl | ⊢ ( ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 ∧ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) ) → ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ) |
| 12 | 9 11 | mpd | ⊢ ( ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 ∧ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) ) → 𝑠 ∈ 𝑝 ) |
| 13 | simpl | ⊢ ( ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 ∧ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) ) → ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 ) | |
| 14 | alnex | ⊢ ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 ↔ ¬ ∃ 𝑛 𝑛 ∈ 𝑠 ) | |
| 15 | 13 14 | sylib | ⊢ ( ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 ∧ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) ) → ¬ ∃ 𝑛 𝑛 ∈ 𝑠 ) |
| 16 | simprr | ⊢ ( ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 ∧ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) ) → 𝑤 = 𝑦 ) | |
| 17 | ifpfal | ⊢ ( ¬ ∃ 𝑛 𝑛 ∈ 𝑠 → ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ↔ 𝑤 = 𝑦 ) ) | |
| 18 | 17 | biimpar | ⊢ ( ( ¬ ∃ 𝑛 𝑛 ∈ 𝑠 ∧ 𝑤 = 𝑦 ) → if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) |
| 19 | 15 16 18 | syl2anc | ⊢ ( ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 ∧ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) ) → if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) |
| 20 | 12 19 | jca | ⊢ ( ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 ∧ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) ) → ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) |
| 21 | 20 | expcom | ⊢ ( ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) → ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 → ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) ) |
| 22 | 4 21 | eximd | ⊢ ( ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) → ( ∃ 𝑠 ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 → ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) ) |
| 23 | 1 22 | mpi | ⊢ ( ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) → ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) |