This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double and in terms of double nand. (Contributed by Anthony Hart, 2-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | andnand1 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ⊼ ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) | |
| 2 | pm4.63 | ⊢ ( ¬ ( 𝜓 → ¬ 𝜒 ) ↔ ( 𝜓 ∧ 𝜒 ) ) | |
| 3 | 2 | anbi2i | ⊢ ( ( 𝜑 ∧ ¬ ( 𝜓 → ¬ 𝜒 ) ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) |
| 4 | annim | ⊢ ( ( 𝜑 ∧ ¬ ( 𝜓 → ¬ 𝜒 ) ) ↔ ¬ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ) | |
| 5 | 1 3 4 | 3bitr2i | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ¬ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ) |
| 6 | df-3nand | ⊢ ( ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ) | |
| 7 | 6 | notbii | ⊢ ( ¬ ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ↔ ¬ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ) |
| 8 | nannot | ⊢ ( ¬ ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ↔ ( ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ⊼ ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ) ) | |
| 9 | 5 7 8 | 3bitr2i | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ⊼ ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ) ) |