This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding biconditional when antecedents are conjuncted. (Contributed by metakunt, 16-Apr-2024) (Proof shortened by Wolf Lammen, 7-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | anbiim.1 | ⊢ ( 𝜑 → ( 𝜒 → 𝜃 ) ) | |
| anbiim.2 | ⊢ ( 𝜓 → ( 𝜃 → 𝜒 ) ) | ||
| Assertion | anbiim | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ↔ 𝜃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbiim.1 | ⊢ ( 𝜑 → ( 𝜒 → 𝜃 ) ) | |
| 2 | anbiim.2 | ⊢ ( 𝜓 → ( 𝜃 → 𝜒 ) ) | |
| 3 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 → 𝜃 ) ) |
| 4 | 2 | adantl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜃 → 𝜒 ) ) |
| 5 | 3 4 | impbid | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ↔ 𝜃 ) ) |