This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | absvalsqi.1 | ⊢ 𝐴 ∈ ℂ | |
| abssub.2 | ⊢ 𝐵 ∈ ℂ | ||
| abs3dif.3 | ⊢ 𝐶 ∈ ℂ | ||
| abs3lem.4 | ⊢ 𝐷 ∈ ℝ | ||
| Assertion | abs3lemi | ⊢ ( ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | absvalsqi.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | abssub.2 | ⊢ 𝐵 ∈ ℂ | |
| 3 | abs3dif.3 | ⊢ 𝐶 ∈ ℂ | |
| 4 | abs3lem.4 | ⊢ 𝐷 ∈ ℝ | |
| 5 | 1 2 3 | abs3difi | ⊢ ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐶 − 𝐵 ) ) ) |
| 6 | 1 3 | subcli | ⊢ ( 𝐴 − 𝐶 ) ∈ ℂ |
| 7 | 6 | abscli | ⊢ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∈ ℝ |
| 8 | 3 2 | subcli | ⊢ ( 𝐶 − 𝐵 ) ∈ ℂ |
| 9 | 8 | abscli | ⊢ ( abs ‘ ( 𝐶 − 𝐵 ) ) ∈ ℝ |
| 10 | 4 | rehalfcli | ⊢ ( 𝐷 / 2 ) ∈ ℝ |
| 11 | 7 9 10 10 | lt2addi | ⊢ ( ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) → ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐶 − 𝐵 ) ) ) < ( ( 𝐷 / 2 ) + ( 𝐷 / 2 ) ) ) |
| 12 | 1 2 | subcli | ⊢ ( 𝐴 − 𝐵 ) ∈ ℂ |
| 13 | 12 | abscli | ⊢ ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ |
| 14 | 7 9 | readdcli | ⊢ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℝ |
| 15 | 10 10 | readdcli | ⊢ ( ( 𝐷 / 2 ) + ( 𝐷 / 2 ) ) ∈ ℝ |
| 16 | 13 14 15 | lelttri | ⊢ ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐶 − 𝐵 ) ) ) ∧ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐶 − 𝐵 ) ) ) < ( ( 𝐷 / 2 ) + ( 𝐷 / 2 ) ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( 𝐷 / 2 ) + ( 𝐷 / 2 ) ) ) |
| 17 | 5 11 16 | sylancr | ⊢ ( ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( 𝐷 / 2 ) + ( 𝐷 / 2 ) ) ) |
| 18 | 10 | recni | ⊢ ( 𝐷 / 2 ) ∈ ℂ |
| 19 | 18 | 2timesi | ⊢ ( 2 · ( 𝐷 / 2 ) ) = ( ( 𝐷 / 2 ) + ( 𝐷 / 2 ) ) |
| 20 | 4 | recni | ⊢ 𝐷 ∈ ℂ |
| 21 | 2cn | ⊢ 2 ∈ ℂ | |
| 22 | 2ne0 | ⊢ 2 ≠ 0 | |
| 23 | 20 21 22 | divcan2i | ⊢ ( 2 · ( 𝐷 / 2 ) ) = 𝐷 |
| 24 | 19 23 | eqtr3i | ⊢ ( ( 𝐷 / 2 ) + ( 𝐷 / 2 ) ) = 𝐷 |
| 25 | 17 24 | breqtrdi | ⊢ ( ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝐷 ) |