This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent wff's yield equal class abstractions (deduction form, with nonfreeness hypothesis). (Contributed by NM, 21-Jun-1993) (Revised by Mario Carneiro, 7-Oct-2016) Avoid ax-10 and ax-11 . (Revised by Wolf Lammen, 6-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abbid.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| abbid.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | abbid | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } = { 𝑥 ∣ 𝜒 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbid.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | abbid.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | 1 2 | alrimi | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝜓 ↔ 𝜒 ) ) |
| 4 | abbi | ⊢ ( ∀ 𝑥 ( 𝜓 ↔ 𝜒 ) → { 𝑥 ∣ 𝜓 } = { 𝑥 ∣ 𝜒 } ) | |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } = { 𝑥 ∣ 𝜒 } ) |