This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021) (Revised by AV, 6-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 9t11e99 | ⊢ ( 9 · ; 1 1 ) = ; 9 9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9cn | ⊢ 9 ∈ ℂ | |
| 2 | 10nn0 | ⊢ ; 1 0 ∈ ℕ0 | |
| 3 | 2 | nn0cni | ⊢ ; 1 0 ∈ ℂ |
| 4 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 5 | 3 4 | mulcli | ⊢ ( ; 1 0 · 1 ) ∈ ℂ |
| 6 | 1 5 4 | adddii | ⊢ ( 9 · ( ( ; 1 0 · 1 ) + 1 ) ) = ( ( 9 · ( ; 1 0 · 1 ) ) + ( 9 · 1 ) ) |
| 7 | 3 | mulridi | ⊢ ( ; 1 0 · 1 ) = ; 1 0 |
| 8 | 7 | oveq2i | ⊢ ( 9 · ( ; 1 0 · 1 ) ) = ( 9 · ; 1 0 ) |
| 9 | 1 3 | mulcomi | ⊢ ( 9 · ; 1 0 ) = ( ; 1 0 · 9 ) |
| 10 | 8 9 | eqtri | ⊢ ( 9 · ( ; 1 0 · 1 ) ) = ( ; 1 0 · 9 ) |
| 11 | 1 | mulridi | ⊢ ( 9 · 1 ) = 9 |
| 12 | 10 11 | oveq12i | ⊢ ( ( 9 · ( ; 1 0 · 1 ) ) + ( 9 · 1 ) ) = ( ( ; 1 0 · 9 ) + 9 ) |
| 13 | 6 12 | eqtri | ⊢ ( 9 · ( ( ; 1 0 · 1 ) + 1 ) ) = ( ( ; 1 0 · 9 ) + 9 ) |
| 14 | dfdec10 | ⊢ ; 1 1 = ( ( ; 1 0 · 1 ) + 1 ) | |
| 15 | 14 | oveq2i | ⊢ ( 9 · ; 1 1 ) = ( 9 · ( ( ; 1 0 · 1 ) + 1 ) ) |
| 16 | dfdec10 | ⊢ ; 9 9 = ( ( ; 1 0 · 9 ) + 9 ) | |
| 17 | 13 15 16 | 3eqtr4i | ⊢ ( 9 · ; 1 1 ) = ; 9 9 |