This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4t3e12 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4t3lem.1 | ⊢ 𝐴 ∈ ℕ0 | |
| 4t3lem.2 | ⊢ 𝐵 ∈ ℕ0 | ||
| 4t3lem.3 | ⊢ 𝐶 = ( 𝐵 + 1 ) | ||
| 4t3lem.4 | ⊢ ( 𝐴 · 𝐵 ) = 𝐷 | ||
| 4t3lem.5 | ⊢ ( 𝐷 + 𝐴 ) = 𝐸 | ||
| Assertion | 4t3lem | ⊢ ( 𝐴 · 𝐶 ) = 𝐸 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4t3lem.1 | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | 4t3lem.2 | ⊢ 𝐵 ∈ ℕ0 | |
| 3 | 4t3lem.3 | ⊢ 𝐶 = ( 𝐵 + 1 ) | |
| 4 | 4t3lem.4 | ⊢ ( 𝐴 · 𝐵 ) = 𝐷 | |
| 5 | 4t3lem.5 | ⊢ ( 𝐷 + 𝐴 ) = 𝐸 | |
| 6 | 3 | oveq2i | ⊢ ( 𝐴 · 𝐶 ) = ( 𝐴 · ( 𝐵 + 1 ) ) |
| 7 | 1 | nn0cni | ⊢ 𝐴 ∈ ℂ |
| 8 | 2 | nn0cni | ⊢ 𝐵 ∈ ℂ |
| 9 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 10 | 7 8 9 | adddii | ⊢ ( 𝐴 · ( 𝐵 + 1 ) ) = ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 1 ) ) |
| 11 | 7 | mulridi | ⊢ ( 𝐴 · 1 ) = 𝐴 |
| 12 | 4 11 | oveq12i | ⊢ ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 1 ) ) = ( 𝐷 + 𝐴 ) |
| 13 | 10 12 | eqtri | ⊢ ( 𝐴 · ( 𝐵 + 1 ) ) = ( 𝐷 + 𝐴 ) |
| 14 | 13 5 | eqtri | ⊢ ( 𝐴 · ( 𝐵 + 1 ) ) = 𝐸 |
| 15 | 6 14 | eqtri | ⊢ ( 𝐴 · 𝐶 ) = 𝐸 |