This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triple negated disjunction introduction. (Contributed by Scott Fenton, 20-Apr-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3pm3.2ni.1 | ⊢ ¬ 𝜑 | |
| 3pm3.2ni.2 | ⊢ ¬ 𝜓 | ||
| 3pm3.2ni.3 | ⊢ ¬ 𝜒 | ||
| Assertion | 3pm3.2ni | ⊢ ¬ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3pm3.2ni.1 | ⊢ ¬ 𝜑 | |
| 2 | 3pm3.2ni.2 | ⊢ ¬ 𝜓 | |
| 3 | 3pm3.2ni.3 | ⊢ ¬ 𝜒 | |
| 4 | 1 2 | pm3.2ni | ⊢ ¬ ( 𝜑 ∨ 𝜓 ) |
| 5 | 4 3 | pm3.2ni | ⊢ ¬ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) |
| 6 | df-3or | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) | |
| 7 | 5 6 | mtbir | ⊢ ¬ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) |