This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A disjunction is equivalent to a threefold disjunction with single falsehood of a conjunction. (Contributed by Alexander van der Vekens, 8-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3biorfd.1 | ⊢ ( 𝜑 → ¬ 𝜃 ) | |
| Assertion | 3bior1fand | ⊢ ( 𝜑 → ( ( 𝜒 ∨ 𝜓 ) ↔ ( ( 𝜃 ∧ 𝜏 ) ∨ 𝜒 ∨ 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3biorfd.1 | ⊢ ( 𝜑 → ¬ 𝜃 ) | |
| 2 | 1 | intnanrd | ⊢ ( 𝜑 → ¬ ( 𝜃 ∧ 𝜏 ) ) |
| 3 | 2 | 3bior1fd | ⊢ ( 𝜑 → ( ( 𝜒 ∨ 𝜓 ) ↔ ( ( 𝜃 ∧ 𝜏 ) ∨ 𝜒 ∨ 𝜓 ) ) ) |