This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *11.51 in WhiteheadRussell p. 164. (Contributed by Andrew Salmon, 24-May-2011) (Proof shortened by Wolf Lammen, 25-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2exnexn | ⊢ ( ∃ 𝑥 ∀ 𝑦 𝜑 ↔ ¬ ∀ 𝑥 ∃ 𝑦 ¬ 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alexn | ⊢ ( ∀ 𝑥 ∃ 𝑦 ¬ 𝜑 ↔ ¬ ∃ 𝑥 ∀ 𝑦 𝜑 ) | |
| 2 | 1 | con2bii | ⊢ ( ∃ 𝑥 ∀ 𝑦 𝜑 ↔ ¬ ∀ 𝑥 ∃ 𝑦 ¬ 𝜑 ) |