This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem zgz

Description: An integer is a gaussian integer. (Contributed by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion zgz A A i

Proof

Step Hyp Ref Expression
1 zcn A A
2 zre A A
3 2 rered A A = A
4 id A A
5 3 4 eqeltrd A A
6 2 reim0d A A = 0
7 0z 0
8 6 7 eqeltrdi A A
9 elgz A i A A A
10 1 5 8 9 syl3anbrc A A i