This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Integer sets
Integers (as a subset of complex numbers)
zexALT
Metamath Proof Explorer
Description: Alternate proof of zex . (Contributed by NM , 30-Jul-2004) (Revised by Mario Carneiro , 16-May-2014) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Assertion
zexALT
⊢ ℤ ∈ V
Proof
Step
Hyp
Ref
Expression
1
dfz2
⊢ ℤ = − ℕ × ℕ
2
subf
⊢ − : ℂ × ℂ ⟶ ℂ
3
ffun
⊢ − : ℂ × ℂ ⟶ ℂ → Fun ⁡ −
4
nnexALT
⊢ ℕ ∈ V
5
4 4
xpex
⊢ ℕ × ℕ ∈ V
6
5
funimaex
⊢ Fun ⁡ − → − ℕ × ℕ ∈ V
7
2 3 6
mp2b
⊢ − ℕ × ℕ ∈ V
8
1 7
eqeltri
⊢ ℤ ∈ V